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An analysis of the vortex street generated 
in a viscous fluid 

By JOHN W. SCHAEFER* AND SALAMON ESKINAZI 
Syracuse University, Syracuse, New York 

(Received 26 December 1958) 

An analytic solution for the velocity field of a vortex street generated in a viscous 
fluid is developed. A method is presented for the determination of the true 
transverse spacing of vortices. Experimental geometry and velocity data, 
obtained by hot-wire techniques, are presented. 

The experimental results verified the validity of the analytic solution. The 
vortices of a real viscous vortex street were found to resemble very closely the 
exponential solution of the Navier-Stokes equations for an isolated axisymmetric 
rectilinear vortex. Three basic regions of vortex street behaviour were apparent 
a t  each Reynolds number investigated-a ‘formation region’ in which the 
vortex street is developed and large dissipation of vorticity occurs, a ‘stable 
region’ in which the vortices display a stable periodic laminar regularity, and 
an ‘unstable region’ in which the street disappears and turbulence develops. 
Geometry and velocities were determined. 

1. Introduction 
The periodicity in wakes in the form of discrete vortices at an intermediate 

range of Reynolds number (R = U,d/v, where U, is the free-stream velocity, 
d the cylinder diameter and v kinematic viscosity) has been recognized for many 
years. In the lower portion of this range, 40 < R < 125, there exists an ordered 
and stable wake-a vortex system commonly referred to as the K&rm&n vortex 
street. 

Academic and practical interest in the vortex street phenomenon has resulted 
in many theoretical and experimental investigations of the vortex system 
generated behind a two-dimensional bluff obstacle. This available literature 
concerning viscous vortex streets may best be summarized as descriptive but 
incomplete analytically, As pointed out by Rosenhead (1953), a quantitative 
theoretical treatment which will consolidate the facts already available is needed. 

The purpose of this investigation is the development of an analytic solution for 
the velocity field of a viscous vortex street and the accurate determination of 
street geometry. An experimental analysis was performed to support and verify 
the analytic results. 

Most of the experimental results on this subject were obtained through photo- 
graphs of the streak-lines developed by colour dyes or suspensions in the fluid. 

* Now at Lewis Research Center, National Aeronautics and Space Administration, 
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In  most instances careful precautions were taken to photograph a steady flow 
by moving the camera with the fluid. Since vortices move at a relative velocity 
to the free stream, the apparent centres of the vortices as observed in the photo- 
graph are then centres of zero relative velocity and not the centres of maximum 
vorticity. Hooker (1936) used this argument to show the reasons for great 
discrepancies in the measurements of street geometry. Tyler (1930) applied the 
hot-wire technique for measurements of velocity in the K&rmhn street. Since 
then this technique has become very productive for measurements of velocity 
and geometry of the vortex street. The results presented here have been obtained 
with the hot-wire technique. 

2. Analytic considerations 
The solution of the Navier-Stokes equations for a viscous vortex system is not 

available in its general form. It is the interest of this investigation to rely on a 
mathematical description of a viscous vortex street based on linearizing methods 
which allow superposition of solutions. The basic solution of the Navier-Stokes 
equations for an isolated rectilinear viscous vortex growing in time due to vis- 
cosity will be considered as the elemental vortex in the superposition method. 

The isolated viscous vortex 

The Navier-Stokes equations in vorticity form for a two-dimensional flow 
field in the (2, y)-plane is 

where t; is the vorticity and v is the kinematic viscosity. In  the cme of isolated 
rectilineax vortices, equation (1) reduces to 

where r is the radial distance from the axis of rotation. Therefore, for an isolated 
rectilinear vortex initially of strength r0/277 concentrated along the axis of 
rotation, the vorticity at a time t and any position r is given by 

5 = -exp r0 (-&). 
4 m t  

The circulation around a circle of radius T is 

(3) 

where 6 is the polar angle; and therefore the circumferential velocity of the 

( 5 )  

vortex is 

For vanishing viscosity and time, or for large r ,  the solution reduces to that for 
a potential vortex. Equation ( 5 )  is plotted in figure 2. 

r r  v --=o 1 -  '- 21rr 2.rr [ - p ( - d ) ] *  
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The potential vortex street 
The co-ordinates appropriate to the following theory, as shown in figure 1, are 
explained below. The co-ordinate x is the distance downstream from the tripping 
cylinder to the point in the flow field P(x,y) under study. The co-ordinate s is 
the distance in the 2-direction from the nearest vortex to the left of P to the 

Y 
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FIGURE 1. Idealized vortex street; geometry and co-ordimtea. 

rlr* 
FIGURE 2. Peripheral velocity of an isolated vortex. 

point P. This vortex, to the left of P, is considered the reference vortex n = 0. 
The indice n represents any other vortex a distance na in the x-direction away 
from the reference vortex. Negative n indicates a vortex to the left of P; positive 
n to the right of P. Therefore, the term ( x  - s + na) is the distance from the trip- 
ping cylinder to any vortex. Similarly, (x - s + na)/2af is the time in the life of 
any vortex from its generation at  the tripping cylinder, f being the frequency of 
vortex shedding. The equations developed below are therefore valid for 
--a0 < y < -a0 and for half a cycle, i.e. 0 < s < a. 

16-2 
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In  this co-ordinate representation, the velocity components for an idealized 
potential KArmAn street of an infinite extent are given by the following sum- 
mations: 

Here h is the transverse distance from the street centreline to the path of the 
vortex centres. Each term in the summation is of the type 

r xi 

and v=-- 
27r r2 27r 9-2 ' 

Y I  21 = -- 

where xi, yf  and r are co-ordinates from the axis of an isolated vortex. Equations 
(6) may be altered to represent the solution for a finite, variable-geometry vortex 
street. This is accomplished by limiting the number of terms of the summation 
and replacing h and a by h, and a, where h, and a, are functions of the vortex 
position. 

The viscozcs vortex street 

Hooker (1936) presented an analysis in which only the vortex nearest the point 
of interest was considered viscous. Since the peripheral velocity outside the 
vorticity core varies as l / r ,  a viscous vortex behaves essentially as a potential 
vortex outside the core. Therefore, vortices far from the point of interest may 
be considered as potential vortices. This method, therefore, suggests essentially 
a potential street of vortices with a single viscous vortex described by equation 
( 5 )  replacing the potential vortex nearest the point of interest. 

A more general solution for a finite, viscous, variable-geometry vortex street 
was developed from equations (6). After incorporating the decay term of each 
vortex as given by equation ( 5 )  and the variable geometry h, (a is a constant 
with distance downstream at a given Reynolds number as determined experi- 
mentally) the velocity components are 

1 

[In/ a T8I2+ [y- (- l)'"'h,-y 
x (1 -exp (- 

4v[(x - s + na)/2af ] 

For a finite street, the limit of summation L is not necessarily the same for 
positive and negative n. 

Equations (7) reduce to Hooker's solution if k = o, h, = const., and n = 0 
in the decay term only. 
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Because of an absence of a priori knowledge of r0, equations (7)  are more 
useful in the following dimensionless form, for which the diameter d of the 
tripping cylinder is used as reference length: 

where q, = 2nud/r0 and qy = 27rvd/I?,. 
This viscous vortex street solution was obtained from the superposition of 

the solutions of equation (2) for the velocity distribution of isolated axisymmetric 
viscous vortices. The correlation of analytic and experimental results indicates 
that equation (5) represents very closely the peripheral velocity of a vortex in 
a, viscous vortex street. This fact justifies the assumed axial symmetry of the 
vortices. The results of Timme (1957) also substantiate this conclusion. There- 
fore, superposition affords a very close approximation of the actual flow con- 
ditions of a viscous vortex street. At downstream positions very close to the 
generating cylinder, the results of this theory are in relatively poorer agreement 
with the actual conditions because of the immediate proximity of the cylinder and 
because of the rolling-up process of the vortex sheet into fully-developed vortices, 

The method of analysis is represented in figures 1 and 3. 

Uns!able 
regon 

A B C 

FIGURE 3. Vortex street coniiguration at R = 62, velocity and geometry to scale. 
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3. Method of evaluation of the velocity field 
The determination of the vortex street velocities, as given by equations (8), 

requires an accurate knowledge of the basic geometric parameters including the 
extent of the street. These parameters have been determined experimentally 
and analytically. 

The longitudinal spacing was determined experimentally, as will be described 
in Q 4.  In  the fully developed stable vortex street, this spacing was found to be 
constant with x for a given Reynolds number. The periodicity was determined 
from the velocity fluctuation oscillogram and was also found to be constant with 
x for the fully developed street at a given Reynolds number. The initial time 
in the life of a vortex was assumed to be at x = 0, the axis of the tripping cylinder. 
Therefore, as indicated in the velocity equations, the life of the vortex n is 
t = ( z -$+na) /2uf .  

In  a viscous vortex, the vorticity is concentrated in a finite circular core which 
grows with time according to equation (3). The outer boundary of the core is 
defined 88 r = r*, this value of r being where the velocity is a maximum as shown 
in figure 2. This value as determined by differentiation of equation ( 5 )  is given by 

...a '* - = 1.26. 
4vt 

The dimensionless core radius r*/d, which grows with time, is given by 

A preliminary analysis indicated that the maximum velocity fluctuation does 
not occur along the path of vortex centres as some experimenters have asserted. 
An analysis based on the configuration of a general vortex street, as in figure 3, 
demonstrated that the maximum velocity fluctuation occurs in the immediate 
neighbourhood of the core edge farthest from the street centreline. As shown in 
figure 3, let h, be that distance from the street centreline, and let us visualize 
a hot wire at some point along the path of h,. When vortices A and C pass the 
hot-wire location, they will induce their maximum peripheral velocity on the 
hot wire. However, when vortex B is directly above the hot wire, it will induce 
a weaker velocity in the opposite direction. By varying the position of the hot 
wire from h, to any y, it can be observed from figure 3 that the magnitude of 
fluctuation within a cycle will decrease when the hot wire is moved in either 
direction. Then the y-location of the maximum induced velocity variation is in 
the neighbourhood of h*. This fact was verified in the analysis. The position of 
maximum fluctuating velocity is easily determined experimentally, and since 
it occurs very near the outer edge of the vortex core, the dimensionless path of 
vortex centres h/d is therefore given by 

The value of the viscosity required for the determination of r*/d, in equation 
(9), was taken as the molecular viscosity since the wake may be described as in 
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a state of laminar oscillation. Also Timme (1957) has shown that in the Reynolds 
number range for which a stable vortex street exists, the molecular viscosity 
determines the decay process. 

Upon determination of the geometry, time and extent of the vortex street, 
the numerical solution for the velocity field relative to the free-stream velocity 
was determined from equations (7) and (8). Since the initial circulation ro is 
an unknown parameter, the velocity field was computed in terms of the dimen- 
sionless velocity qz and qv. The solutions describe the dimensionless velocity 

FIUURE 4. Velocity fluctuation at R = 62, x/d = 10, yld = 0. 

distribution of a vortex street generated behind a cylinder moving with a velocity 
of Qo in a still fluid. If a dimensionless free-stream velocity of Qo is superposed on 
the above solutions, the flow of a fluid about a stationary cylinder is achieved. 
Therefore, the dimensionless total velocity vector is 

Q = Qo+qt (11) 

where q = iqz+jqv and Qo = 2 ~ i U ~ d / F ~ .  Since r0 is unknown, the analytic 
solution was matched to the experimental results at  a point in the flow field in 
order to determine Qo. The match point was taken at x /d  = 10, y/d = 0 for a 
Reynolds number of 62, the only Reynolds number at which the analysis was 
performed. The dimensionless free-stream velocity was determined by satisfying 
the relation QT/Qo  = UTIUo at the match point (QT and UT denote time averages 
of Q and U ) .  The time average of q from equation (1 1) was also matched at that 
point using (8). Qo was determined from the known terms QT/Qo and QT - Qo. 

At any desired point in the flow field P(x, y), the velocity was determined from 
equation (1 1) by substitution of the results of equations (8) for varying s and the 
determined value of Qo. A plot of the velocity over a cycle gave QT at the point, 
and also the root-mean-square value i& and peak-to-peak value $T of the fluc- 
tuating component of velocity q’. A comparison of analytic and experimental 
results is presented in figures 4 to 12 and table 1. 
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FIGURE 5. Velocity fluctuation at R = 62, x/d = 10, y/d = 0.429. 

FIGURE 6. Velocity fluctuation at R = 62, xld = 10, y/d = 0.857. 

FIGURE 7. Velocity fluctuation at R = 62, x/d = 10, yfd = 1.714. 
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Y P  
FIGURE 9. Time average total velocity, R = 62, x/d = 20. 0 ,  Analytic; 0, experimental. 

Yld 
FIGURE 10. Root-mean-square of velocity fluctuation, R = 62, 

z/d = 10. 0 ,  Analytic; a, experimental. 
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Yid 
FIGURE 11. Root-mean-square of velocity fluctuation, R = 62, x/d = 20. 

0 Analytic ; experimental. 

Yld 
F I a m  12. Peak-to-peak velocity fluctuation, R = 62, x/d = 10. 

0 Analytic; , experimental. 

x/d yld UTIUO QT/Qo %lUo &lQo 
10 0 0.762 0.762 0.047 0.068 

0.429 0.782 0.799 0.059 0.062 
0-857 0,793 0.886 0.078 0.082 
1.286 0.892 0.968 0.109 0.110 
1.714 0.892 1.006 0.112 0.105 
2.143 0.964 1.018 0.095 0-080 
2-714 0-997 1.014 0.067 0.047 

20 0 0.760 0.772 0.022 0.030 
1.143 0.843 0.891 0.041 0.052 
2-286 0.951 1.010 0.068 0.067 
3.143 0.971 1.021 0.054 0.041 

c;.luo &/So 
0-132 0.198 
0.216 0.216 
0.253 0-254 
0.331 0.312 
0.323 0.302 
0.279 0.222 
0.202 0.130 

TABLE 1. Comparison of analytic and experimental velocities, R = 62 
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4. Experimental procedures 
A hot-wire anemometer was used for all velocity and geometry measurements 

because of its high sensitivity, reliability and its convenience in determining the 
desired results. The constant-current hot-wire set, built at Syracuse University, 
was similar to the set used by Eskinazi & Yeh (1956). 

The vortex street system was generated in a circular low-turbulence wind 
tunnel of diameter 18in. with a continuously variable flow velocity from 0 to 
20ft. sec. A tripping cylinder of circular cross-section generated the vortex 
street. The cylinder was mounted in a traversing mechanism for variation of 
longitudinal distance from the hot wire. The cylinders used were 0-035 and 
0.080in. piano wire; all data presented here were obtained with the 0.036in. 
diameter tripping cylinder. 

Vortices are shed from a tripping cylinder at a definite shedding frequency 
depending on Reynolds number; this frequency is preserved throughout the 
stable region of a street. Therefore, the cyclic variation of velocity at a fixed 
point is very stable and consistent for moderate Reynolds numbers. The hot 
Wire, positioned at a fixed point P(x, y), recorded the cyclic variation in time or 8. 

The hot wire was positioned parallel to the axis of rotation of the vortices; 
therefore, the velocity vector was at all times on a plane perpendicular to the 
axis of the hot wire. The hot wire therefore responded to the total velocity vector. 

The mean voltage across the hot wire determined the temporal mean velocity. 
The cyclic voltage fluctuation from the hot wire was compensated for the heat 
capacity lag. The magnitude and wave forms of the velocity fluctuations were 
determined respectively from a root-mean-square voltmeter and a dual channel 
oscilloscope. Since the street periodicity was never in excess of 800c/s, an 
electrical filter with flat response to 1000 c/s was used to eliminate amplifier noise 
in the measured signals. 

The spacing h, was determined from the plots of the root-mean-square fluc- 
tuating velocity (a plot of peak-to-peak fluctuating velocity yields the same h*). 
The spacing h* is essential in determining the path of vortex centres as outlined 
previously. This spacing should not be confused with h, the transverse spacing 
of the path of vortex centres. 

The longitudinal spacing a was determined with a special hot-wire system. 
Two hot Wires were fixed at  a known longitudinal distance apart. The longi- 
tudinal spacing was computed from the phase angle between the two fluctuating 
hot-wire signals and the known distance between the hot wires. 

The hot-wire material was tungsten of 0.00015in. diameter. The central 
sensing portion was of approximately &in. length; the ends were copper plated 
for soldering to the probe needle points. 

A sensitive alcohol micromanometer was used for pressure measurements. 
The free-stream velocity head was sensed by a total pressure probe in the flow 
and a static pressure tap at the wall. The mouth of the total pressure probe was 
of a high aspect ratio rectangular cross-section to eliminate the necessity of 
corrections due to viscous effects at low velocities. 
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5. Results and discussion 
Comparison of analytic and experimental velocity 

A comparison of analytic and experimental results was performed at x/d = 10 
and 20 and R = 62 for all comparable velocity variables. The analytic velocity 
fluctuation wave forms are plotted to scale on the experimental oscillograms in 
figures 4 to 7 .  Comparison of time average total velocities UTjUo and QT/QO are 
presented in figures 8 and 9, root-mean-square velocity fluctuation .ii>/Uo and 
&/Qo in figures 10 and 11 and peak-to-peak velocity fluctuation t&/uo and 
&/Qo in figure 12. 

The analytic results demonstrate favourable agreement with the actual 
experimental flow conditions. The favourable comparison allows the following 
conclusions : 

(1) The vortices of the real vortex street behave approximately according to 
equations (4) and (5). 

(2) The vortex street analysis of equations (7) is a good approximation of 
actual conditions. 

(3) The radius of the vortex core is closely determined by equation (9), and 
the outer edge of the core is very nearly coincident with the position of maximum 
velocity fluctuation. 

(4) The transverse spacing of vortices is closely determined by equation (10). 
(5) The assurhed origin of time, x = 0, is justified. 
The greatest discrepancy in the comparison of results is in the time average 

total velocity. This discrepancy appears to be primarily due to experimental error 
in measurement of uT/uo. The analysis below supports this observation. The 
carrier velocity of vortices in the street U, may be determined experimentally 

and 

The result of equation (12) for R = 62 is Uv/Uo = 0.92. Based on the position of 
the vortex centre in the analytic wave form, the experimental value from 
equation (13) is Uv/Uo = 0-85 approximately. Since the values of u and f sub- 
stituted in equation (12) correlate well with those of other experimenters, the 
value Uv/Uo = 0.92 is reasonably accurate. Experimental results for UT therefore 
appear to be lower than the true value. This discrepancy was estimated to be 
partially due to the non-linear effect of large velocity fluctuation on the measured 
time average total velocity UT. It is also interesting to note that the largest 
discrepancy occurs in the region of largest velocity fluctuation. From the analysis 
shown in figure 19, the vortex carrier velocity is given by Qv/Qo = 0.91, which is 
in good agreement with equation (1 2). 

U, = Zfa, (12) 
(13) 

in two ways: 

UV = UT f I (u’ + v’) la=O* 

Circulation 
The dimensionless free-stream velocity determined from the match of analytic 
and experimental results is Qo = 2.565. Therefore, from the definition of Qo, the 
total circulation of a vortex in the fully developed state is 

r0 = 2mXJo/Qo = 0.0261 ft.2/sec. 
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From boundary-layer theory, the rate K at which vorticity in the form of 
vortex sheets is generated at the tripping cylinder is given by 

where A is defined as 

and U, is the free-stream velocity just outside the boundary layer (see Birkhoff 
& Zarantonello 1957). In the case when v = 0, 

For a laminar parabolic boundary layer, A = 0.5. Assuming that vorticity is 
conserved in the rolling-up to form vortices, the rate of generation of vorticity 
may be written also as 

K = r,f. 
Substituting the experimental conditions and the circulation of this investiga- 
tion, we get A = 0.343 and therefore 

0.34317; ro= -. 
f 

The result of this investigation based on the fully developed street gives a 
smaller value of A than that analytically predicted by the laminar parabolic 
boundary-layer theory. It is therefore apparent that vorticity is partly lost in the 
rolling-up to form fully developed vortices. As presented by Birkhoff (1953), an 
empirical analysis by Prandtl substantiates this finding. Prandtl determined 
that the initial vorticity decreases to about half where the first vortex centres 
appear. 

Solving for A from the experimental results of Timme (1957) at a Reynolds 
number of 200 (moving cylinder in still water), we find A = 0.46. The discrepancy 
in Ais attributed to the difference in vorticity dissipation in the two experiments. 
It is also of interest to note that, as determined by Roshko (1953), R = 200 is in 
a Reynolds number range (150 < R < 300) in which considerable experimental 
scatter occurs due to instability of the wake. 

Geometry 
The longitudinal spacing a of the stable vortex street is constant at a given 
Reynolds number as shown in figure 13 for four Reynolds numbers. This fact 
has been well substantiated by other investigations, i.e. Taneda (1955), Gold- 
stein (1943) and Roshko (1953). The variation of longitudinal spacing with 
Reynolds number is presented in figure 14. The results of Taneda (1955), for 
experiments in water for a large range of Reynolds numbers, agree very well with 
the results of this investigation. Taneda’s results are also plotted, together with 
the results of this investigation and that of Timme. The results of the empirical 
analysis developed below are also presented. 
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FIUURE 13. Longitudinal epacing vemus distance downstream. 
0, R = 69; 0, R = 75;; A, R = 98; 0, R = 122. 
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An interesting empirical result may be derived from the determined longi- 
tudinal spacing. From equation (12) for the carrier velocity of vortices, 

- a uv 
a = @ '  

If U, = C,V,, where C, is assumed tentatively to be independent of Reynolds 

a C U C,-C,R number, then 
v o - - - -  

Z = 2 f d - 2 5  2 F '  

where X is the Strouhal number fd/Uo and F the dimensionless frequency fdz/v .  
The empirical results of Kovasznay (1949) and Roshko (1963), valid for 
40 < R < 150, also agree with the results of this investigation; they found 
S = 0.212(1- 21.2R-1), which is the same ae F = 0.212R- 4.5, and the sub- 
stitution of this into the above equation gives 

Formation Unstable 

C 

xld 
FIQURE 15. Trctnsverse apctoing for three Reynolds numbers. 

With the determined value of C,, equation (14) is plotted in Sgure 14 ae a 
function of Reynolds number. The good agreement of experimental results and 
equation (14) indicates that Uv/Uo is dependent of R and that its value is close to 
0.90 in the stable range of the street. 

The variation of transverse spacing with distance downstream for three 
Reynolds numbers is shown in figure 15. A tabulation of all transverse spacing 
parameters h,/d, r&, and h/d is presented in table 2. As seen in figure 15, the 
path of vortex centres exhibits similar variation at  all Reynolds numbers in- 
vestigated. A necking-down in h/d is apparent a t  a short distance from the trip- 
ping cylinder; this is followed by an increase to a maximum value; h/d then 
decreases at large distances from the tripping cylinder. Goldstein (1943)postulates 
a similar downstream variation, and states that upon formation of the vortex 
street the distance between rows increases until a position of transitional stability 
is reached at which time there is no further increase; the increase in core radius 
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then becomes the dominating factor and the stable system tends to close up and 
disappear. 

At each Reynolds number (figure 15)’ the x/d distance at which the minimum 
spread of the path of centres occurs near the tripping cylinder is nearly coincident 
with the position of maximum downstream velocity fluctuation. This position is 
defined as the start of the fully developed street. The region between the tripping 
cylinder and this minimum point is therefore referred to as the ‘formation 
region ’. 

Reynolds 

number x/d h*P r*ld h/d h/a 
62 3 0.91 0.51 0.40 0.12 

4 0.83 0.59 0-24 0.07 
5 0.91 0.65 0.26 0.08 
6 1.14 0.72 0.42 0.13 
7 1.26 0.78 0.48 0.15 
8 1-40 0.83 0-57 0.18 

10 1.57 0.93 0.64 0.20 
12 2.00 1.01 0.99 0.30 
15 2.03 1.12 0.91 0.28 
20 2.31 1.31 1-00 0.31 
25 2.17 1.46 0-71 0.22 

94 2 0.71 0.36 0.35 0-13 
3 0.70 0.44 0.26 0.10 
4 0.91 0-51 0-40 0.15 
5 1.09 0.57 0.52 0.19 
6 1-22 0-63 0.59 0.22 
7 1.31 0.68 0.63 0.23 
8 1.37 0.72 0.65 0.24 

10 1.41 0.81 0.60 0.22 
12 1.46 0.88 0.58 0.22 
15 1-51 0.98 0.53 0.20 
20 1.59 1.14 0.45 0.18 

118 5 1.17 0.50 0.67 0.27 
7 1.20 0.60 0.60 0.24 

10 1.21 0.71 0.50 0.20 
15 1.03 0.87 0.16 0.06 

TABLE 2. Transverse spacing parameters and spacing ratio 

At large distances behind the tripping cylinder the vortex street exhibits an 
unstable behaviour. This instability becomes apparent approximately at the 
downstream position where the vorticity core extends to the path of centres of 
the opposite row; i.e. h/d = r,/2d. The region in which h/d < r,/2d is therefore 
termed the ‘unstable region’. The region of the stable vortex street, between the 
‘formation region’ and ‘unstable region’ is referred to as the ‘stable region’. 

The regions are shown in figure 15. The start of the stable region is governed 
approximately by the empirical relation 

R - .I. 260, 8, 



T h e  vortex street generated in a viscow Jluid 257 

where (z/Q is the distance downstream at which the stable region begins. The 
end of the stable region is governed approximately by the relation 

R - + 1500, GI* 
where ( z / d ) ,  is the distance downstream at which the stable region ends. 

The formation region is characterized by the development of the stable vortex 
street and dissipation of vorticity as previously mentioned. Kovasznay (1949) 
observed the existence of the formation region in his investigation. He states 
that in the formation of a vortex street vortices are not shed directly from the 
tripping cylinder but develop some distance downstream as an instability in the 
laminar wake. 

The unstable region is characterized by irregular behaviour and the eventual 
transition to turbulence. Taneda (1955) observed two possible phenomena in this 
region, one a transition to turbulenceand theother the eventualformationofavor- 
tex street of large scale. Goldstein (1943) mentions only the former characteristic. 

A number of other experimenters have attempted to measure transverse 
spacing. Tyler (1930), in his hot-wire experiments, assumed the incorrect relation 
h/d = h,/d. Photographic techniques have been applied by other experimenters 
in which the point of zero velocity was assumed to be the vortex centre. Hooker 
(1936) pointed out that this assumption was incorrect; the point of maximum 
vorticity which is the hortex centre is not coincident with the point of zero 
velocity. This fact is apdarent from figure 19. Timme’s experimental and analytic 
results also substantiate this fact. 

The variation of the spacing ratio h / a  as defined in this investigation, with 
distance downstream at a given Reynolds number is proportional to h, since the 
longitudinal spacing is a constant. The maximum spacing ratios are approxi- 
mately equal to the value predicted by K&rm&n (1912), h/a = 0.281, in his 
idealized analysis. From the plots of h/d and a/d,  it was found that (hla),, = 0.28 
at R = 62 and (his),, = 0.24 at R = 94 and 118. The experimental values are 
tabulated in table 2. Other experimenters have observed large values up to 
0.525; it is believed that these large values are due to the previously mentioned 
incorrect methods of determining the transverse spacing. 

Velocity 

The variation of the time average of total velocity U,/U, with distance from 
the vortex street centreline is presented in figure 16 for a number of downstream 
positions. The transverse variation of velocity deficiency UT- - UT is com- 
pared with an exponential decay as shown in figure 17. The normalized variables 
are the local velocity deficiency divided by the maximum velocity deficiency, 
and b4 = 1 where A?lUT/hUTm, = 0.5. 

The variation of fluctuating velocity &/U, with distance from the street 
centreline is presented in figure 18 for a number of downstream positions and 
a Reynolds number of 62. The position in y /d  of the maximum peak-to-peak 
velocity fluctuation is essentially coincident with the position of maximum root- 
mean-square of velocity fluctuation in all cases. 
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The velocity fluctuation wave forms at xld = 10 are presented at various 
transverse locations in figures 4 to 10. Some low-amplitude wave forms exhibit 
a small ‘pip’ on the signal-this is hot-wire bridge noise and is not instability 

Y P  
FIUTJRE 16. Experimental time average total velocity, R = 62. 
0,  x/d = 2; 0, ~ / d  = 4; A, x/d = 6; 0, x/d = 10; @, x/d = 20. 

bt 
FIUURE 17. Exponential character of total velocity, R = 62. 
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in the vortex street. The wave forms at y/d = 0 exhibit a frequency double that 
of the shedding frequency because of the equal influence of the symmetrically 
staggered rows. 

Yld 
FIGURE 18. Experimental root-mean-square of velocity fluctuation, R = 62. 

0, x/d = 2; [3, x/d = 4; A, x/d = 6; 0, z/d = 10; @, x/d = 20. 

FIGURE 19. Analytic trmsverae velocity variation through a vortex, R = 62, x/d = 10. 

No quantitative analysis of vortex street velocity at Reynolds numbers higher 
than 122 was undertaken in this investigation. However, a number of observa- 
tions are of interest. Above a Reynolds number of approximately 126, occasional 
,irregular behaviour was apparent at all downstream locations. The rate of 
occurrence and randomness of these disturbances increased with increasing 
Reynolds number. A low frequency ‘whip ’ of the whole vortex street at large 
distances downstream was also apparent. The amplitude of the whip increased 
with increasing Reynolds number. 
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6. Conclusions 
The vortex street generated behind a circular obstacle is essentially composed 

of vortices which behave according to the solution for an isolated viscous vortex, 
equations (4) and (5 ) ,  as presented in figure 2. The velocity at any point in the 
stable vortex street wake relative to free stream is the summation of the velocity 
contributions at the point from all vortices. 

The vortex street phenomenon in the Reynolds number range 50 < R c 125 
may be divided into three distinct areas of behaviour, the ‘formation’, ‘stable’ 
and ‘unstable’ regions as shown in figure 15. The formation region is the region 
immediately behind the tripping cylinder in which the vortex street develops 
and a dissipation of vorticity occurs. The stable region is the region of the fully 
developed stable vortex street in which the vortices display a periodic laminar 
regularity. The unstable region is the region far downstream which exhibits 
irregular behaviour and the eventual transition to turbulence. Above a Reynolds 
number of approximately 125, a completely stable vortex street is not apparent. 

The transverse spacing is accurately determined by equation (10). 
A large velocity deficiency, a backflow, exists directly behind the tripping 

cylinder. The amplitude of velocity fluctuation at the start of the stable region 
may be as great as 75 % of the average velocity. 
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